Uncertainty as a Function of Time for Subcritical Experiment Parameters

Jesson Hutchinson, Travis Grove, Mark Smith-Nelson

Los Alamos National Laboratory

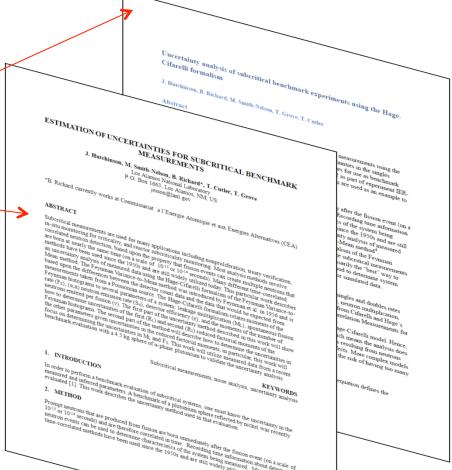
Presented at the 2016 NCSP TPR

General Overview

- When designing critical or subcritical experiments, it is desirable:
 - to have an estimate of the measurement uncertainties prior to performing an experiment
 - to have the smallest measurement uncertainties possible given measurement time constraint
- Having well-designed experiments with small uncertainties helps improve nuclear data and therefore has direct impacts on criticality safety.
- This work shows how the uncertainties in various measurement parameters vary as a function of counting time and provides an approach to estimate measured uncertainties and guide in optimizing the available counting time.

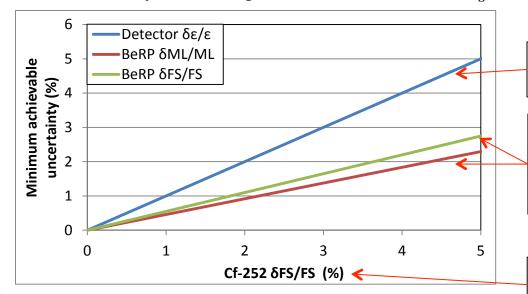
General Overview

- Everything in this work uses the measurement approach and uncertainty analysis presented in the BeRP/Ni benchmark.
- Detailed in LA-UR-16-20375 and ICNC 2015
- General overview of approach:
 - Cf-252 measurements used to determine detector efficiency.
 - Primary method uses Cf-252 source certificate.
 - Appendix includes use of singles and doubles.
 - Singles and doubles count rates of BeRP measurement used with efficiency to determine leakage multiplication.



Limited analytical results

- One can set the uncertainty (δ) in singles (R_1) and doubles (R_2) count rates to 0 (expected at infinite count time) and determine the minimum:
 - Uncertainty in detector efficiency ($\delta \epsilon$)
 - Uncertainty in leakage multiplication (δM_I)
 - Uncertainty in BeRP spontaneous fission rate (δF_s)



Cf-252 measurement

$$\delta\varepsilon = \varepsilon \sqrt{\frac{\delta R_1(\tau)^2}{R_1(\tau)^2} + \frac{\delta F_S^2}{F_S^2}}$$

$$\lim_{\delta R_1 \to 0} \frac{\delta \varepsilon}{\varepsilon} = \frac{\delta F_S}{F_S}$$

BeRP measurement

$$\lim_{\delta R_1 \to 0, \delta R_2 \to 0} \frac{\delta M_L}{M_L} = \left| \frac{\partial M_L}{\partial \varepsilon} \, \delta \varepsilon \right|$$

True for ANY system/configuration

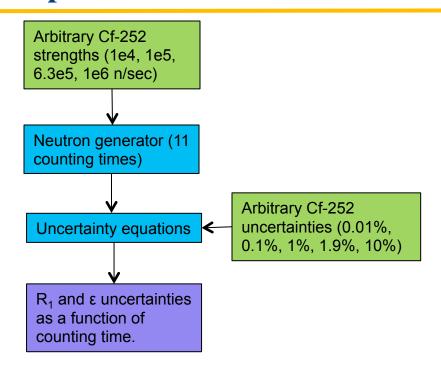
Specific to the measured configuration (bare BeRP shown here).

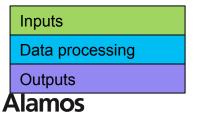
Uncertainty in Cf-252 emission from source certificate.

UNCLASSIFIED

Slide 4

Data process

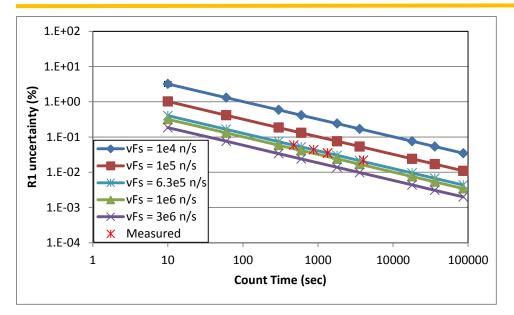




Sum of all counting times: ~8 days.

Slide 5

Cf-252: R1 uncertainty

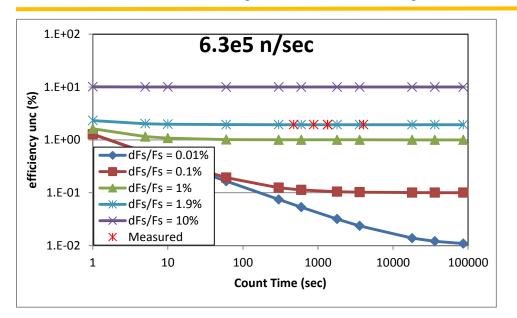


$$\delta R_1(\tau) = \frac{1}{\tau} \sqrt{\frac{2m_2(\tau) + m_1(\tau) - m_1^2(\tau)}{N - 1}}$$

- The uncertainty in singles count rate (δR_1) decreases as a function of the square root of the counting time as expected (count time and N are proportional).
- As the Cf-252 source strength (vF_S) increases, δR_1 is smaller at any given count time as expected.

These curves are independent of $\delta F_S/F_S$

Cf-252: Efficiency uncertainty



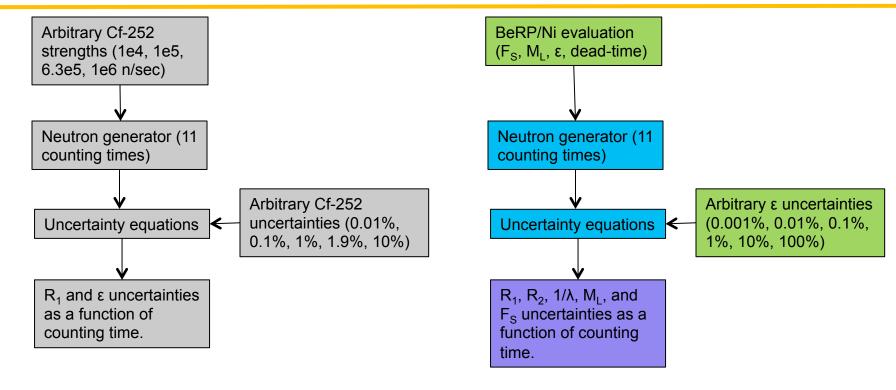
Cf-252 measurement $\delta \varepsilon = \varepsilon \sqrt{\frac{\delta R_{\rm l}(\tau)^2}{R_{\rm l}(\tau)^2} + \frac{\delta F_{\rm S}^{\ 2}}{F_{\rm S}^{\ 2}}}$ $\lim_{\delta R_{\rm l} \to 0} \frac{\delta \varepsilon}{\varepsilon} = \frac{\delta F_{\rm S}}{F_{\rm S}}$

These types of curves were generated for 4 source strengths.

- At short count times, the efficiency uncertainty ($\delta \epsilon$) has contributions from δR_1 and δF_S . As count time increases, the uncertainty approaches an asymptote equal to the uncertainty in the Cf-252 source emission rate (δF_S).
- As the source strength increases, the time to δR_1 decreases, so the time to reach the asymptote decreases.

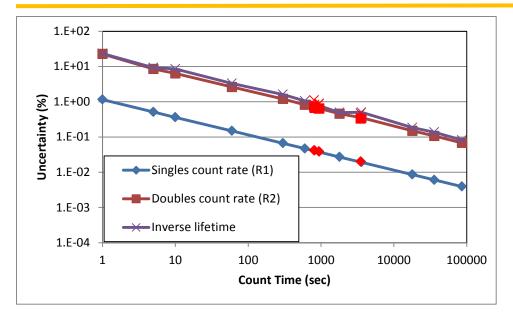
UNCLASSIFIED

Data process



Data processing
Outputs

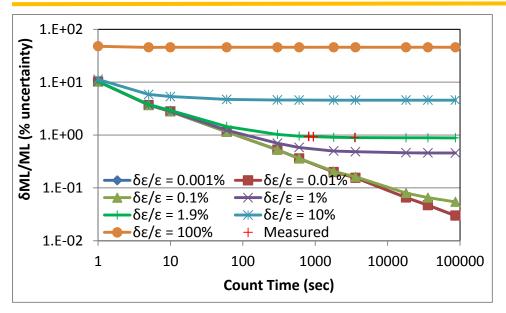
BeRP



$$\delta R_1(\tau) = \frac{1}{\tau} \sqrt{\frac{2m_2(\tau) + m_1(\tau) - m_1^2(\tau)}{N - 1}}$$

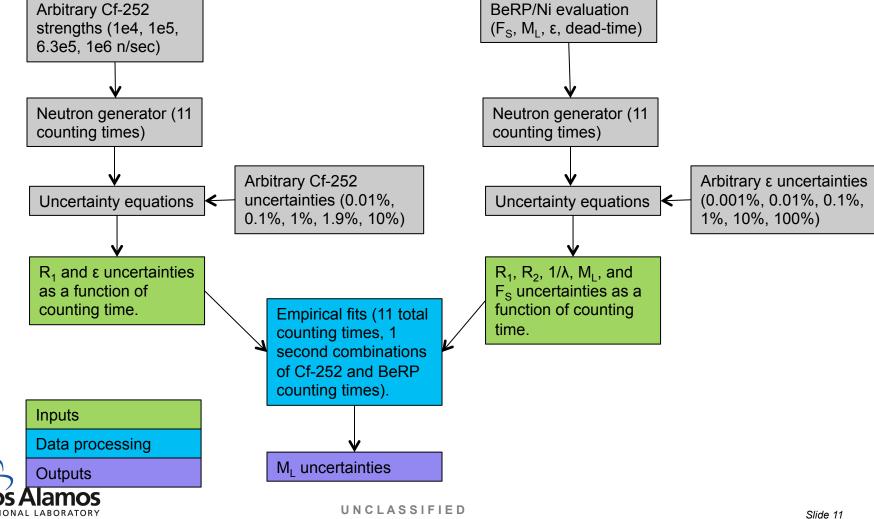
The uncertainty in singles count rate (δR_1) , doubles rate (δR_2) , and inverse lifetime (λ) decreases as a function of the square root of the counting time as expected (count time and N are proportional).

BeRP

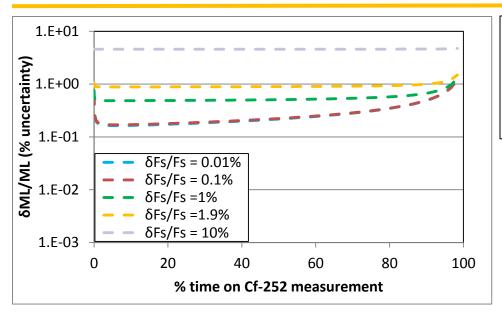


At short count times, the leakage multiplication uncertainty (δM_L) has contributions from δR_1 , δR_2 , and $\delta \epsilon$. As count time increases, the uncertainty approaches an asymptote proportional to the uncertainty in detector efficiency $(\delta \epsilon)$.

Data process



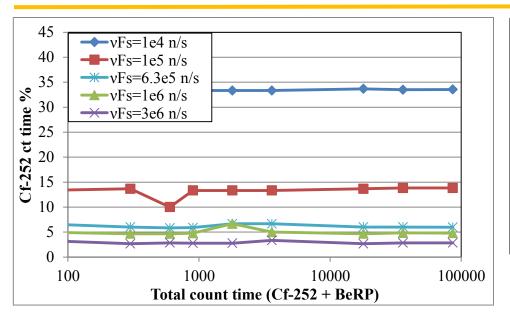
Cf-252 + BeRP: 3600 total count time



These types of curves were generated for 11 different total counting times.

- Assumes that if X% of time is spent measuring the Cf-252, then (100-X)% of time is spent measuring the BeRP.
- While the minimum uncertainty is strongly dependent on the uncertainty of the Cf-252 source strength, the percent time at which the minimum occurs does not.

Cf-252 + BeRP

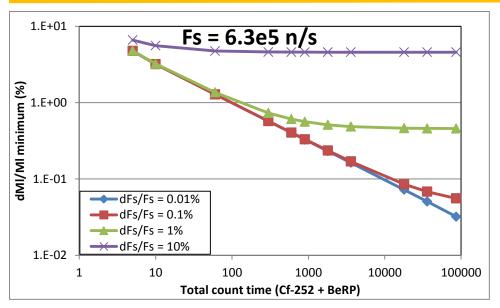


Recall the statement: "Cf-252 measurements used to determine detector efficiency. Primary method uses Cf-252 source certificate. Appendix includes use of singles and doubles."

These curves would be completely different if the second approach was used.

- The % time that should be spent counting the Cf-252 is independent of the source strength uncertainty (δF_S) .
 - But dependent on the source strength value.
- The % time that should be spend counting the Cf-252 is mostly independent of the total counting time.

Cf-252 + BeRP



These types of curves were generated for 4 source strengths.

Uses ideal Cf-252 percent measurement time.

- This type of curve is very useful for experiment design.
- It shows the minimum leakage multiplication uncertainty (δM_I) achievable for any given total count time (Cf-252 measurement time plus BeRP measurement time).

Conclusions

- The uncertainty as a function of counting time was investigated.
- This answered three important questions related to subcritical measurement design:
 - How much time one should measure Cf-252 versus the SNM object (bare BeRP used here).
 - An estimate of the minimum possible measurement uncertainties (as a function of Cf-252 source emission uncertainty).
 - An estimate of the minimum possible uncertainty in various parameters as a function of counting time.
- Note that the Cf-252 results were general (several source strengths were investigated) but the SNM results are specific to the bare BeRP ball.
 - One needs to apply this approach to the specific configuration(s) that will be measured.
- With the approach that we have used (Cf-252 measurements with source certificate to determine efficiency) the uncertainty in the source emission is very important.
 - For SCRαP, the new Cf-252 source uncertainty is half of that used in BeRP/Ni (1% vs 1.9%)
 - We are investigating if we can get sources with smaller uncertainties.

Future work

- This approach will be applied to future subcritical experiments.
 - IER-111422: Subcritical Copper-Reflected α -phase Plutonium (SCR α P) Integral Experiment.
- Can this approach be applied in a more general way for SNM measurements?
 - This should be investigated further.
- We will also consider applying this optimization approach to other subcritical measurement methods.
 - Rossi- α , time interval, other Feynman methods, etc.

Acknowledgements

■ This work was supported in part by the DOE Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy.

